
Introduction

(Chapters 1 and 2, p. 1-21)

 http://learnonline.unca.edu/

 Use your UNCA login & password.

 Our class page is
◦ “Computer Science 182.001: Introductory

Programming for Media Applications: Whitley”

 Syllabus link at the top.
◦ Course policies

◦ Contact information

◦ Textbook, etc

2

http://learnonline.unca.edu/

 A (high level) programming language is a
language used by people to tell a computer
what to do.

 These languages are used to write source
code, which consists of a series of
statements: small tasks for the computer to
perform, such as drawing a rectangle or
adding two numbers.

 A compiler or interpreter is used to convert
the human-written source code into low level
machine code the computer can use.

3

 Machine code is written in binary, a series of
0’s and 1’s called bits.

0000 0000 0011 0001 0010 0011 …

 These bits are grouped into instructions: very
simple actions such as moving a number
from one place to another.

 Good news: we don’t have to deal with this
soup, because we have high level languages
with compilers & interpreters!

4

5

 Java is a high level programming language.
Here’s how programs are made with Java:

 1) A person writes Java source code and saves
it into a .java file. Example:

/* this is a simple Java program */

class Example {

public static void main(String args[]) {

System.out.println("this is a simple Java program");

}

}

6

 2) The Java compiler (named javac) compiles the .java
file into a .class file containing Java Byte Code, an
intermediate level of code somewhere between Java
source code and machine code. Example:

public static void

main(java.lang.String[]);

Code:

0: iconst_0

1: istore_1

2: goto 30

5: getstatic

8: new

11: dup

12: ldc

14: invokespecial #23

17: iload_1

18: invokevirtual #27

21: invokevirtual #31

…

7

 3) The Java Virtual Machine (JVM), also called
the Java Runtime Environment (JRE), runs the
Java Byte Code.

 The JVM is an interpreter*. It takes each line
of Java Byte Code one at a time, turns it into
machine code, and runs it.
◦ Picture recap:

◦ Contrast with a compiler.

8

* a half-truth

 Compiling Java is complicated, so why is it
done this way?

 Every type of CPU ever made has different
machine code instructions. You can’t learn
them all!

 Java Byte Code is universal. You can run it on
Microsoft Windows, Solaris, Linux, Mac OS, …
◦ All you need is the Java Virtual Machine on your

computer, and Oracle gives that away for free!

9

 In this course, we’ll learn a high level language
called Processing.
◦ Download free for your Windows, Mac, or Linux

computer at http://www.processing.org/

 It’s very similar to Java.
◦ Think of it as an extra “layer” of code on top of Java.
◦ Processing source code gets turned into Java source

code, and given to the Java compiler.

 Processing has a lot of built-in features that
make pictures, drawings, and animations easy.

 Easy to transition to Java later this semester, and
next semester in CSCI 202.

10

http://www.processing.org/

Menu & Toolbar

Run Button ⇨
Tabs

Text editor

Messages & errors

Console

11

 Let’s do a simple program.
 1) In the text area, type
println(“Hello, world!”);

 2) Press the Run button on the toolbar.
◦ (It’s a triangle pointing to the right.)

 Two things happen:
◦ A message will appear in the console

Hello, world!

◦ A small square window will open
 We’ll call it the display window. It’s where images and

animations will appear later.

12

 The syntax of a language describes the rules
of how to write code.
◦ It’s like English grammar rules, but for computer

programs.

 If you mistype something, or get the syntax
wrong, the program will not run. These are
called syntax errors or simply bugs.

 Example:

println(“Hello, world!”;

 Debugging is the art of fixing these bugs.

13

 You can add comments anywhere in your
code. They have no effect on the program.

 Useful for making notes or describing the
code to people. There are two kinds.

 One-line comments: after //

// This is a comment. Oogabooga!

 Multi-line comments: between /* and */

/* This is a larger comment

stretching over two lines. */

14

Graphics Primitives / Shapes

(Chapter 6, p. 103-120)

 The display window is a coordinate plane for
displaying drawings and animations.

2

 Every location in the display window is a pixel
(a dot of light) with a unique x,y coordinate.

 The origin with coordinates (0,0) is at the top
left corner.

 Remember: the positive y axis goes down!

 100 by 100 is the default size. Change the
size of the window with the size function.

size(400, 300); // 400 by 300 pixels

3

 We can draw a point at any location in the
display window with the point function.

point(40, 60); // x,y coordinates 40,60

 Lines can be drawn connecting any two
locations with the line function.

line(40, 60, 80, 20);

 That line connects the first location (40, 60)
to the other location (80, 20).

4

 Make a 300 x 300 display window.

 Draw at least 6 points and 6 lines.

 Arrange them into a composition by changing
the coordinates.

 Raise your hand when you’re done, or if you
need help.

 I’ll help everyone finish and get checked off.

5

 Draw rectangles and squares with the rect
function.

 Provide 4 numbers:
◦ x,y coordinates of top left corner

◦ Width of the rectangle

◦ Height of the rectangle

rect(10, 10, 50, 50);

rect(80, 70, 60, 110);

6

 You can change the way rect draws rectangles by using
the rectMode function.

 rectMode(CORNER);

◦ Default. Draw rectangles with the top-left corner x,y then width
and height.

 rectMode(CORNERS);

◦ Specify x,y coordinates of any two opposite corners.

 rectMode(CENTER);

◦ Specify the x,y coordinates of the center, then width and height.
 rectMode(RADIUS);

◦ Specify the x,y coordinates of the center, followed by half the
width and half the height.

 You only need to call rectMode once. It’s effect is
permanent until the end of the program, or until you call it
again to override the old value.

7

 Draw ellipses and circles with the ellipse
function.

 Provide 4 numbers:
◦ x,y coordinates of the center
◦ Width of the ellipse
◦ Height of the ellipse

 ellipseMode works just like rectMode, but
the default is CENTER.

ellipse(90, 90, 160, 160);

ellipse(110, 120, 70, 30);

8

ellipse(90, 90, 160, 160);

ellipse(110, 120, 70, 30);

 Why is the small ellipse in front?
 The code you write is sequential. Code is

executed one line after the other, from top to
bottom.

 The code for the large ellipse appeared above the
other, so it was drawn first.

 Then, the small ellipse was drawn on top of
whatever was already there.

9

 You can draw a part of an ellipse (like a slice
of pie) with the arc function.

 Provide 6 numbers:
◦ Same 4 numbers as an ellipse, then

◦ The start angle and stop angle (in radians)

// Top half of a circle

arc(90, 90, 160, 160, PI, 2*PI);

// PI is a built-in number, approx 3.14159

10

 A circle has 360 degrees, or 2*PI radians.

11

triangle(x1, y1, x2, y2, x3, y3);

◦ Specify the x,y coordinates of all 3 endpoints.

quad(x1, y1, x2, y2, x3, y3, x4, y4);

◦ Specify the x,y coordinates of all 4 endpoints.

12

 We draw curved lines called bezier curves using
the bezier function. (Extremely useful!)

 Provide 8 numbers:
◦ x,y coordinates of the first end point, the first control

point, the second control point, and finally the second
end point

bezier(10, 50, 30, 90, 60, 70, 90, 10);

 Control points “bend” the bezier curve towards
them.

 Imagine the curve begins at the first end point,
then bends partway towards the first control
point, then bends partway towards the second
control point, then goes to the second end point.

13

 By default, we use RGB colors in Processing.
 Define a color as red, green, and blue

components. Each component is an intensity
between 0 and 255.
◦ Bright red is (255, 0 , 0)
◦ Dark green is (0, 120, 0)
◦ Yellow is (255, 255, 0)

 Grayscale colors can be specified with only
one component – the brightness.
◦ White is (255, 255, 255) or simply 255.
◦ Black is (0, 0, 0) or simply 0.

14

 Put an extra component (called the alpha or
opacity) onto the end of any color to change
its transparency.

 255 means opaque, and 0 means fully
transparent. (Easy to get this backwards!)

 Examples:
◦ (255, 0, 0, 150) is partially transparent red.
◦ (0, 0, 255, 0) is completely transparent, with no

visible color.
◦ (150, 255) is a fully opaque gray, equivalent to

plain simple 150.

15

 Change the background color of the display window with
the background function.

background(255, 0, 255); // purple!

 Change the color inside shapes with the fill function.
◦ Remember: use 3 components for a color, 1 component for

grayscale.
◦ Transparency doesn’t work on background. (Why?!? Who knows!)

 Change the color of lines, points, and the border of shapes
with the stroke function.

// rectangle with black insides and a red border

fill(0);

stroke(255, 0, 0);

rect(10, 10, 50, 50);

16

 Turn off fill color with noFill();
◦ Shapes will be hollow on the inside, with no filling

at all.

 Turn off stroke color with noStroke();
◦ Shapes will have no separate outline.

◦ Points and lines disappear completely!

 Using both noFill(); and noStroke(); makes
all shapes invisible!
◦ After all, a rectangle is just some filling with a

border!

17

 You can change the thickness of borders, lines,
and points with the strokeWeight function.

 Specify a width in pixels – the default is 1.
strokeWeight(10);

line(10, 10, 90, 90); // thick line

 smooth(); turns on anti-aliasing (smoothing).
◦ Turn it back off with noSmooth();

 These functions all have permanent effects until
you override it with a new value.
◦ Ex: One use of stroke(255, 255, 0); and all future

shapes will be filled with yellow, until the end of the
program or you specify otherwise.

18

 Create a Processing program to display a
composition using at least:
◦ One colored ellipse

◦ One colored rectangle

◦ One colored bezier curve

◦ More stuff, if you want!

 Don’t worry about artistry too much – this is
just code-writing practice!

19

 You can change the color model in
processing if you don’t like the “RGB 255”
default.

colorMode(RGB, 1000000);

 Now, each red, green, and blue component is
a number from 0 to a million!
◦ This allows for much more fine-grained colors!

Your video card and monitor have limits, though.

20

 In the HSB color model, a color is defined by a
hue, a saturation, and a brightness.

 A hue is like an angle on the color wheel.
◦ Like having a rainbow wrapped around a frisbee!!!

 Saturation determines how “vibrant” or “colorful”
a color is. Grayscale colors have 0 saturation,
and bright neon colors have high saturation.

 Brightness is… well, you know. Brightness! Low
brightness makes a dark color, and any color
with a brightness of 0 is black.

colorMode(HSB, 360, 100, 100);

// maximum hue is 360. max saturation

// and brightness are 100 each.

21

22

Variables

(Chapter 3, p. 23 - 42)

 All data and information a program uses is
stored in the computer’s memory.

 Every location in memory has a unique
number called its address.
◦ Think of memory like a line of numbered PO boxes

at the post office.

 Each memory location can store information.

 A variable is a name given to a memory
location. We create and use them to store,
retrieve, and modify information in memory.

2

 In order to use a variable, we must first declare
it.

 Every variable has a type and a name. Example:

int x; // variable type int, named x

 The variable x can hold an integer such as 1337.

 There are many different types of variables,
suited for different kinds of information.

 The simplest types are called primitive types.
◦ Later, we’ll learn about more complex types of variables

called arrays and objects.

3

 boolean holds a truth value: true or false.
 char holds a character – symbols such as letters of the

alphabet and punctuation marks
 byte, short, int, and long are types that hold integer

numbers.
◦ byte can hold any number from -128 to 127

 A byte is stored with only 8 bits, btw!

◦ short can hold any number from -32768 to 32767
◦ int can hold any number in the range of ~ 2 billion
◦ long can hold truly enormous numbers!

 float and double are types that (sorta) hold real numbers
(we call them floating point numbers)
◦ float can hold ~ 8 significant digits, and exponents up to

~ 1038

◦ double can hold ~ 15 significant digits, and exponents up to
~ 10308. More precise than a float!

4

 To declare a variable, say its type, then its name, then a
semicolon. Examples:

int sum;

char c;

float number;

 You can even declare more than one variable of the same
type, all at once.

int e, f, g;

 You can assign a value to a variable with an assignment
statement.
◦ It looks like a math equation with a semicolon, but it’s not. The

source is on the right side, and the destination is on the left.

sum = 7;

number = 3.1;

5

 You can give a variable a value at the same
time you declare it. It’s called initializing the
variable.

int y = 7; // y is declared, value 7

boolean z = true;

 You can even assign a value from one
variable to another!

short a = 3;

short b;

b = a; // b gets 3

short e = b; // e gets 3

6

 You can name a variable almost anything you
want. You may use
◦ Alphabet letters, both uppercase and lowercase

◦ Numbers

◦ Underscores _

 But, the name must begin with a letter.
◦ thisIsAGoodName

◦ fifty7

◦ 5seven – illegal name, because it starts with a
number!

7

 It’s good style to:
◦ Name a variable with a descriptive word or phrase.
◦ Capitalize the first letter of each word, except the first

word.
◦ Don’t use excessively long names.
◦ Examples of good names:

 imageWidth

 sumTotal

 isComplete

 Variables that you intend to never change are called
constant.
◦ For example, PI is a constant, of value ~3.14159…

 Constants are usually named in all-caps, with
underscores for spaces.
◦ PI, CORNERS, CENTER, MAX_VALUE

8

 Many programming languages (e.g. Java,
Processing, C) are called strongly typed.
When you declare a variable, you must specify
its type, too.

 Some programming languages (e.g. Perl, PHP,
BASIC) are called weakly typed, so variable
types don’t have to be declared before use.
The type of a variable is inferred by what sort
of thing is put into it.
◦ “Oh, you put the letter ‘R’ into that variable? Ok,

that means it’s the type of variable that holds a
character!”

9

 You can do arithmetic with variables. Algebra
works just like you’d expect, mostly…

 There are several arithmetic operators, most
of which you already know:
+ is addition 3 + 5

- is subtraction 4 – 2

* is multiplication 6 * 8

/ is division 9 / 3

 Division is a little strange…

% is modulus (a.k.a. “mod”) 4 % 3

 Mod gives the remainder of long division.

10

 = is called the assignment operator, used to
assign a value into a variable.

byte z;

z = 4 + 9; // z gets the value 13

 You can make arithmetic expressions out of
constants like 17, as well as variables like z.

long k = 2;

long m = 10 * k + 1; // m gets 21

11

 Whenever you do an arithmetic expression with
variables of the same type, the result is the same
type.
◦ Sounds obvious, right? When the computer evaluates

1 + 2, the answer is 3, and its an integer because the
operands are integer.

 This does strange things to division, though!

 1 / 4 evaluates to an integer, because the two
operands are integers.

 Since we can’t store 0.25 in an integer, the
computer truncates (rounds down), by forgetting
everything after the dot!

12

 1 / 4 is 0, and don’t let anyone tell you
different!
◦ It’s called integer division.

 However, if at least one operand is a floating
point number, the result will be floating
point!

 So, 1.0 / 4 is actually 0.25
◦ Called floating-point division.

13

 ++ and –- are unary (one-operand) operators for
incrementing and decrementing.

int x = 5;

x++; // x is now 6

x--; // x is now 5

 There are also compound operators that do
arithmetic followed by assignment.

x += 5;

x = x + 5; // identical to the above line

 The LHS and RHS (the two sides) are used as
operands for arithmetic, then assigned into LHS.

 += -= *= /= %= each do the specified
math operation, then assignment.

14

 Operator precedence works just like in
“normal” math.

 Anything in parentheses is evaluated first.
◦ The “innermost parens” always have priority.

 Then * / and % are evaluated left to right.

 Lastly + and binary – are evaluated left to
right.

int g = 7 + 3 * 6; // g is 25

int h = (4 + 2) % 3 + 2 / 3;// h is 0

15

 Arithmetic operators are left-associative: evaluated from
the left.

 The assignment operator = is right-associative: evaluated
from the right.

16

 Processing has many built-in variables that
are used without declaring them.
◦ They have highly useful values, which automatically

always stay up-to-date! They “already exist.”

 width is the current width of the display
window in pixels.

 height is the current height of the display
window in pixels.

 We’ll learn many more soon (teasers!),
including mouseX, mouseY, and frameCount,
which are used for animations.

17

18

 1) Make a diameter-10 circle that always
stays in the middle of the display window, no
matter the size.
◦ Hint: remember width and height built-in variables,

and do arithmetic on the coordinates!

 2) Make another circle that’s halfway between
the first circle and the origin.

 3) Make 2 more circles exactly 25 pixels
below the first two.

 Raise your hand when you’re done, or if you
need help!

19

 Every variable has a type. Only data of that
type may be stored into it.

 You can assign between variables of the same
type.

 You can also assign from a "smaller" type into
a "larger" but similar type.
◦ This is called implicit type conversion; it converts

from one type to another automatically, without
telling you.

20

 In order from largest to smallest, the numeric
primitive types are:
◦ double
◦ float
◦ long
◦ int
◦ short
◦ byte

 You can assign from any of those types to a
higher type on the list.

 Rule of thumb: you can't assign when there is a
possible loss of information, such as assigning a
double to a float.

21

 Type casting allows you to break the rules of
implicit type conversion. You can "force it" to
assign, even if information is lost.

 So, if you use type casting to force the value 7.5
into an int, it will truncate and 7 will be stored.

 Put the type you want in front of the
variable/value you want to change.
◦ Works like a unary operator, but you must use parens.
◦ There are 3 forms of correct syntax:

int i = (int) 7.5;

int j = int (7.5);

int k = (int) (7.5);

int m = int 7.5; // Wrong! Need parens!

22

 Type casting is temporary.
◦ It does not change the type of a variable.

◦ Type casting only makes it "behave" as if it were
another type for a single use.

int h;

float f = 7.5;

h = (int) f;

println(h); // 7

println(f); // still 7.5

23

Boolean Arithmetic and Conditionals

(Chapter 4.8 – 4.10, p. 65 - 78)

 You can make arithmetic expressions with
boolean values / variables, kinda like you do
with numbers.

 A boolean expression uses special boolean
operators instead of the normal arithmetic
operators like + and -.

 A boolean expression evaluates to either true
or false – not a number.
◦ 5 > 4 is true

2

 Relational operators (more often called comparisons)
are a kind of boolean operator that takes normal
numbers (or numerical variables) as operands.
◦ < less than
◦ > greater than
◦ == equal to (Don’t confuse with assignment =)
◦ <= Less than or equal to
◦ >= Greater than or equal to
◦ != Not equal to

 Examples:
◦ 5 < 3 false
◦ 4 >= 4 true
◦ -14 == -13 false
◦ 1 != 2 true
◦ x > y depends on the values of x and y

3

 Logical operators take two boolean values or
boolean expressions as operands. They allow us
to combine boolean expressions into larger ones.
◦ || OR (true when at least 1 operand is true)
◦ && AND (true when both operands are true)
◦ ! NOT (unary, true when operand is false)

 A note for mathematicians:
◦ Sorry, the implication operator  isn’t in Java or

Processing, but you can create it manually.
 A  B is the same as !A || B or equivalently !(A && !B)

◦ The bijection operator  is covered by ==
 Or, if you feel pedantic, (!A || B) && (!B || A). Sorry, I digress!

4

 Precedence rules apply. Here’s a fuller list,
highest precedence to lowest.
◦ (Taken from http://en.wikipedia.org/wiki/Java_operators)

5

()

++ -- ! Unary -

* / %

+ -

< <= > >=

== !=

&&

||

=

http://en.wikipedia.org/wiki/Java_operators

 !(9 > 3)

 !(5 < 3 && !false) || 2 == 2

 (-47 <= -46 || 12 > 13) && !!!!!!(true || false)

int x = 5, y = 6, z = -7; // use below

 (!(x+1 <= y) || (2*z*-1%5) > 3*x/y) && !!true

6

 !(9 > 3)
◦ false

 !(5 < 3 && !false) || 2 == 2
◦ !(false && true) || true
◦ true

 (-47 <= -46 || 12 > 13) && !!!!!!(true || false)
◦ (true || false) && true
◦ true

int x = 5, y = 6, z = -7; // use below

 (!(x+1 <= y) || (2*z*-1%5) > 3*x/y) && !!true

magic occurs here

◦ true

7

 So far, we’ve written programs with statements
executed one after the other, sequentially. The
program flows from top to bottom.
◦ It’s called Sequential Control Flow.

 Sometimes, you may want your program to take
different actions in different situations, based on
some condition.
◦ It’s called Conditional Control Flow.

 A conditional is code that does this.

 The simplest conditional in Java / Processing is
the if statement.

8

 An if statement has the word "if", then a boolean
expression in parens, then a block of code called the
body in curly brackets.

if(boolean_expression) {

// body

}

 First, the boolean expression is evaluated.
◦ If it’s true, the body is executed.
◦ If it’s false, the body is completely skipped.

 Example:
int x = 5;

if (x == 5) {

line(10, 10, 70, 70); // it will be drawn!

}

9

int x = 150;

if (x > 100) {

ellipse(50, 50, 36, 36);

}

if (x < 100) {

rect(35, 35, 30, 30);

}

line(20, 20, 80, 80);

10

 An if statement can have an optional else
case on the end. Together they’re called an
if-else statement.

if(boolean_expression) {

// body executed when boolean true

} else {

// body executed when boolean false

}

 First, the boolean expression is evaluated.
◦ If it’s true, only the first body is executed.
◦ If it’s false, the other body is executed instead.

11

int x = 90;

if (x > 100) {

ellipse(50, 50, 36, 36);

} else {

rect(33, 33, 34, 34);

}

line(20, 20, 80, 80);

12

 A print statement is used to output plain text to the
console, like we did with "Hello world!"

print("Hello world!");

 You can print variable values, numbers, sentences, or
just about anything!

 To print a sentence or some other string of letters,
put it in double quotes.

 If you print multiple things, they appear right next to
each other. Try this:

print("1");

print("2");

print("3");

 Use println instead of print and it’ll put a
newline on the end for you.

13

 Suppose I need help deciding whether or not
to wear a coat.

 Declare a variable named temperature and
initialize it to 20. Make an if-else statement:
◦ If the temperature is less than 32 degrees, print

that I should wear a heavy coat.

◦ Otherwise, print that I shouldn’t wear any coat,
because it’s too hot outside.

 Change the value of temperature to 70, to
make sure the else case works too.

14

 If you want to choose between more than 2 things, you can put
additional cases in an if-else statement.

if(boolean_expression) {

// body

} else if (boolean_expression) {

// body

} else if (boolean_expression) {

// body

} else {

// body

}

 Each boolean expression from top to bottom is evaluated until
we find the first one that’s true. Only that body is executed.

 If none of the expressions were true, we do the else body by
default. Note that the else has no boolean expression.
◦ If there isn’t an else case, do nothing! Same as the else body being empty.

15

int x = 20;

if (x > 200) {

fill(255, 0, 0);

} else if(x > 100) {

fill(0, 255, 0);

} else if(x > 0) {

fill(0, 0, 255);

} else {

fill(0);

}

ellipse(50, 50, 80, 80);

16

 So you might be wondering what the
difference is between an if-else statement
and many separate if statements.

 In an if-else statement, only one body is
executed, no matter how many cases there
are. It’s about picking at most one out of
many choices.

 It’s possible for many if statements to all be
true, some of them true, or none true.

17

int x = 500; // We see one circle!

if(x > 0) {

ellipse(20, 20, 10, 10);

} else if(x > 100) {

ellipse(80, 20, 20, 20);

} else if(x > 200) {

ellipse(80, 80, 30, 30);

} else if(x > 300) {

ellipse(20, 80, 40, 40);

}

18

int x = 500; // We see 4 circles!

if(x > 0) {

ellipse(20, 20, 10, 10);

}

if(x > 100) {

ellipse(80, 20, 20, 20);

}

if(x > 200) {

ellipse(80, 80, 30, 30);

}

if(x > 300) {

ellipse(20, 80, 40, 40);

}

19

int x = 9001;

if(x < 0) {

println("x is negative.");

} else if(x >= 0 && x <= 9000) {

println("x is between 0 and 9000.");

} else {

println("It’s over 9000!");

}

20

 Suppose I need help deciding what coat to wear.
 Declare a variable named temperature and

initialize it to 20. Make an if-else statement with
4 cases:
◦ 1) If the temperature is less than 32 degrees, print that I

should wear a heavy coat.
◦ 2) If the temperature is between 32 and 55 degrees,

print that I should wear a jacket.
◦ 3) If the temperature is exactly 56 degrees, then that

must mean it’s raining, obviously!? Print that I should
wear a rain coat.

◦ 4) Otherwise, print that I shouldn’t wear any coat,
because it’s too hot outside.

 Run the program with several temperature
values, to make sure every case works right!

21

 A switch statement is a different type of conditional, similar to if-else.
 You execute one of several cases based on the value of a variable.
int x = 3;

switch(x) {

case 1:

fill(0, 0, 255);

break;

case 2:

fill(0, 255, 0);

break;

case 3:

fill(255, 0, 0);

break;

default: // default is optional, kinda like else is optional

fill(0);

}

ellipse(50, 50, 50, 50);

22

 Switch statements look very different from if-
else, but they’re similar.

 We’re still picking at most one case out of many.

 Switch statements are very limited, though. They
compare the variable against specific values such
as 1, 2, or 3.
◦ It’s like being restricted to == comparisons, and the

others like < are off limits.

 You can use any boolean expression in if-else
statements!

 But, what’s with all the "break" statements…?

23

 Switch statements have a weird property
called fall through, where once we find the
case to execute, we "fall through" and
execute the ones below it, too!

 The break statement stops that weirdness
from happening. break; instantly leaves the
surrounding statement.

 So, once one body in the switch is executed,
we "break out" of the switch statement and
we’re done.
◦ It "breaks your fall"!

24

int x = 1, y = 0;

switch(x) {

case 1:

y++;

case 2:

y++;

case 3:

y++;

default:

y++;

}

25

CSCI 182:
Introductory Programming for

Media Applications
Loops

(Chapter 8.1, p. 164-174)

● Let's say I want to make a row of 10 evenly spaced dots:
strokeWeight(4);
point((width/11)*1, height/2);
point((width/11)*2, height/2);
point((width/11)*3, height/2);
point((width/11)*4, height/2);
point((width/11)*5, height/2);
point((width/11)*6, height/2);
point((width/11)*7, height/2);
point((width/11)*8, height/2);
point((width/11)*9, height/2);
point((width/11)*10, height/2);

● Each dot is made in almost the same way – a clear pattern!

2

Motivating Example

● Whenever you want the computer to do a task (such as
drawing an evenly-spaced dot) many, many times, it's
better to use a loop.

● A loop is code that repeats itself (iterates) many times over
and over, while a boolean expression (a.k.a. conditional)
stays true.
○ It's called iterative control flow.

● There are 3 slightly different kinds of loops we'll talk about
today.
○ for loop
○ while loop
○ do loop (a.k.a. do-while loop)

3

Iteration

while(<conditional>) {
 <body>
}
● A while loop looks a lot like an if statement, but there's

one important difference!
● 1) First, the boolean expression is evaluated.
○ 2) If it’s false, skip the body.
○ 3) If it’s true, execute the body, then we go back to step 1 and

repeat!

● Each time through is called an iteration.

4

while loop

● The idea is to control the number of iterations, to
accomplish something useful.
○ So, if we drew 1 dot each iteration, then after 10 iterations,

we'd have a row of dots like before!

● The key is to make progress every iteration, bringing
the boolean expression "closer" to becoming false!

● Once the boolean expression becomes false, we stop
iterating.

5

while loop

strokeWeight(4);
int i = 1; // initialize
while(i < 11) { // conditional
 point((width/11)*i, height/2);
 i++; // update
}
● This example shows the three super important steps to making a good

loop:
○ 1) Declare & initialize a loop variable for controlling the loop. Picking the initial

value is crucial. It’s like a "starting point."
○ 2) Update your loop variable each iteration, so you're "making progress."
○ 3) Write a conditional designed to be true several times, then eventually

become false. This is your end “goal.”

6

Motivated Example

Today's most important slide!

● Make a diagonal line one point at a time, like this:
○ Declare two int variables named x and y.
○ Initialize them both to 0.
○ Use a while loop, and in each iteration:

■ Draw a point at (x,y).
■ Increment both x and y.

○ Your while loop should continue until either x reaches the right edge of the
display window, or y reaches the bottom.

○ Make sure your program works regardless of display window size.

7

In-Class Lab 1: while loop

for(<init>; <conditional>; <update>) {
 <body>
}
● Perhaps the most popular kind of loop is the for loop.
● They're essentially identical* to while loops, but the

syntax puts the three important parts all on the top
line.
○ initialization
○ conditional
○ update

8

for loop

Okay, maybe this slide

is the most important.

*(another half-truth we'll bust later)

● Print a column of numbers:
int j;
for(j = 0; j < 5; j++) { // 0 thru 4
 println(j);
}
● Draw a "bullseye" of concentric circles:
size(500,500);
for(int d=width; d>0; d-=30) {
 ellipse(width/2, height/2, d, d);
}

9

Examples

● Make a pattern of shapes:
int i, spacing;
spacing = width/5;
for (i = 1; i < 5; i++) {
 ellipse(spacing*i, spacing*i,
 spacing, spacing);
}

10

Examples

● The while loop version:
<init>
while(<conditional>) {
 <body>
 <update>
}

● The for loop version:
for(<init>; <conditional>; <update>) {
 <body>
}

11

Conversion: while loop ↔ for loop

● The while loop version:
int i = 1;
while(i < 11) {
 point((width/11)*i, height/2);
 i++;
}
● The for loop version:
int i; //Pro tip: declare variables first
for(i = 1; i < 11; i++) {
 point((width/11)*i, height/2);
}

12

Conversion Example

do {
 <body>
} while (<conditional>);
● The elusive do-while loop, also called a do loop, is similar

to a while loop, but the conditional is checked at the end of
each iteration, instead of at the beginning.

● This means it will iterate once, even if the conditional is
never true!
○ If the conditional of a while loop or a for loop starts out false, it

won't even iterate once.
● Useful when you want to do something at least once, and

possibly more.

13

do-while loop

int j = 1;
do {
 print("buffalo ");
 j++;
} while(j <= 8);

http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo

14

do-while loop

http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo

● By looking at a loop, you can calculate how many iterations it will
go through, and what will happen in each iteration.

int j;
for(j = 0; j < 5; j++) {
 println(j);
}
● Ask yourself:

○ What is the loop variable? What is its initial value?
○ Is the conditional satisfied initially?
○ What happens during that first iteration?
○ What changes affect the next conditional evaluation?
○ What's the last value of the loop variable that satisfies the conditional? What

happens during that final iteration?
○ What loop variable value made the conditional turn false?

15

Analyzing Loops

● Set the size to 600 x 600.
● Write a for loop with variable y that makes a column of 10

diamonds, 60 pixels apart. The first is centered at (100, 30).
● Each diamond is 10 pixels wide by 10 pixels tall. Hints:

○ Your loop should have 10 iterations.
○ The next diamond’s center is 60 pixels below the previous one.
○ Instead of diamonds, try having each iteration draw just 1 point.
○ Modify it to draw a quad instead, centered where the point was.

■ Each corner goes in a cardinal direction: up, right, down, left.
■ Each coordinate pair of your quad is one of these four corners.
■ Imagine you are standing at location (100, y) in the middle of a

diamond. How would you modify y to get from the middle to the top of
the 10-pixel-tall diamond? Write it as an expression using y. Your x
coordinate will still be 100. This is your first coordinate pair!

■ Then, write similar expressions for the other 3 corners.

16

In-Class Lab 2: for loop

int i, j;
for(i = 0; i < 100; i++) {
 for(j = 0; j < 100; j++) {
 point(i, j);
 }
}
● You can nest a loop inside another loop.

○ Also works with if statements, switch statements, and more. You can even nest
multiple levels deep.

● We call the top loop the outer loop. The loop inside it is the inner
loop.

● When nesting loops, use different loop variables.

17

Nested Loops

int i, j;
for(i = 0; i < 100; i++) {
 for(j = 0; j < 100; j++) {
 point(i, j);
 }
}
● Each iteration of the outer loop of i, we execute the entire inner

loop of j, doing all iterations until the inner loop conditional turns
false.

● Then, we do all of that again in the outer loop's next iteration!
● The number of inner loop iterations gets multiplied.

○ So above, 100 * 100 means 10,000 points are drawn! Each gets a different (i, j)
location in the display window.

18

Nested Loops

int i, j;
strokeWeight(5);
for(i = 0; i < 100; i+=10) {
 for(j = 0; j < 100; j+=10) {
 point(i, j);
 }
}

● You don't have to use ++ for the update statements. Try
instead using +=10. You'll see an evenly spaced grid!

● What if I drew something cooler than just a point, each
iteration?

19

Nested Loops

● Starting with your lab 2 code, make a 10-by-10 grid of 100 diamonds.
Each one must be 10 pixels wide and 10 pixels tall. The first is
centered at (30, 30). Each column is 60 pixels from the next column.

● Your lab 2 loop makes 1 column of diamonds. Nest that loop inside
another loop with a different variable x, with 10 iterations.

● You’ll need to rewrite the x coordinates of the quad a little bit, so
they are expressions involving x instead of being near coordinate 100.

● Hints:
○ Imagine you are standing at location (x, y) in the middle of a diamond. How

would you modify x and y to get from the middle to the top of the
10-pixel-tall diamond? Write an expression using x for the x coordinate, and
write your expression from lab 2 using y for the y coordinate. This is your
first coordinate pair!

○ Write 3 more pairs of expressions to get you from the middle to each of the
other corners. That’s your quad!

20

In-Class Lab 3: nested loops

	Introduction
	Shapes
	Variables
	Conditionals_Boolean_Arithmetic
	Loops

